
Using Mathematical and Scientific Markup
as an Approach to Model Specification

Joseph B. Collins

Naval Research Laboratory, Code 5583
4555 Overlook Ave, SW

Washington, DC 20375-5337
joseph.collins@nrl.navy.mil

Keywords: physics, modeling, mathematics, markup,
system specification

Abstract
 Complex systems need to be modeled in a way that
supports validation, flexible composition of component
models and component model re-use. A methodology that
supports these requirements must: support conceptual
modeling, i.e., mathematical description, and; document the
semantics embodied in a model. The expression of
mathematical semantics alone will not suffice. For physics-
based models, the semantics must also identify those
physical laws that were applied by the modeler. Only in this
way can one adequately document the particular modeling
decisions made in the model’s construction.
 The development of Markup Languages has enabled the
Semantic Web, with the universal document type being
expressed in the Extensible Markup Language (XML)[1].
Higher level semantic layers may be defined in XML
applications such as is done with the Mathematical Markup
Language (MathML). The mathematical semantics
embodied within Content MathML are currently being
expanded beyond the expression of “grade school
mathematics” to enable the expression of higher level
mathematics by the use of content dictionaries. These
mathematical content dictionaries contain the definitions of
semantic XML tags so that the use of well-defined
mathematical concepts in a document may be
unambiguously expressed by application of these tags.
Building on top of this base, scientific markup languages are
beginning to be developed.
 In particular, we have identified several requirements
and some solutions towards the development of a physics
markup language. For example, it must be embedded within
a documentation standard that supports an accompanying
natural language description. The physics markup language
itself must have the ability to support the expression of
physical models. This includes the concepts of: physical
objects, or physical bodies, which have physical observables
as properties; and physical laws, which when applied to
physical objects results in model equations, or other
relations. Physical objects have spatio-temporal extents
which are usually functions of time. These concepts must be

translated into XML elements so that the elements may be
used by modelers to express their models in a
straightforward way using semantic tagging. In this paper
we will discuss progress to date, including: the
identification of Open Mathematical Documents (OMDoc)
[2] as a candidate documentation system; the definition of
an abstract data type for the expression of physical
variables; and the definition of a physics-based model as a
set of constraint relations defined on a set of physical
objects.

1. INTRODUCTION
 Increasingly, computer models are used not only to
design, develop, or analyze just a single aspect of a new
product, but to co-design and co-develop multiple aspects
and to analyze their interactions. Analyzing the complex
interactions of geometry with physical properties such as
thermal and mechanical transport, vibration, electrical
behavior, etc., requires integrated computational support.
We believe that it is possible, and desirable, to provide a
documentation framework to support interchange of model
specifications between computational applications for
design and analysis of those models. To support this goal
and others, we are developing a physics markup language.
 While there are many aspects to system representation,
we envision a physics markup language to be used to
represent the physics-based aspects of systems. When large
physical systems are modeled it may not be appropriate to
just compose a model of independent, individually modeled
components. In order to correctly model physical systems,
we must often have models that are integrated at the
conceptual, or mathematical level. Only in this way can we
correctly model the behavior of a whole system with
strongly interacting parts. We describe here some of the
mathematical representation issues encountered when doing
this.
 A basic choice we have made in this endeavor is to
make use of the expressiveness offered by the Semantic
Web technologies, i.e., XML. XML may be thought of as a
universal data representation language. This is relevant
because we include in our thinking the idea that model
specification requires that we remove the commonly
assumed boundary between the idea that models are distinct

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2008 2. REPORT TYPE

3. DATES COVERED
 00-00-2008 to 00-00-2008

4. TITLE AND SUBTITLE
Using Mathematical and Scientific Markup as an Approach to Model
Specification

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,Code 5583,4555 Overlook Avenue
SW,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Society for Modeling & Simulation International [SCS]: Grand Challenges in Modeling & Simulation
(GCMS08), 16-19 Jun 2008, Edinburgh, Scotland.

14. ABSTRACT
Complex systems need to be modeled in a way that supports validation, flexible composition of component
models and component model re-use. A methodology that supports these requirements must: support
conceptual modeling, i.e., mathematical description, and; document the semantics embodied in a model.
The expression of mathematical semantics alone will not suffice. For physicsbased models, the semantics
must also identify those physical laws that were applied by the modeler. Only in this way can one
adequately document the particular modeling decisions made in the model?s construction. The
development of Markup Languages has enabled the Semantic Web, with the universal document type
being expressed in the Extensible Markup Language (XML)[1]. Higher level semantic layers may be
defined in XML applications such as is done with the Mathematical Markup Language (MathML). The
mathematical semantics embodied within Content MathML are currently being expanded beyond the
expression of ?grade school mathematics? to enable the expression of higher level mathematics by the use
of content dictionaries. These mathematical content dictionaries contain the definitions of semantic XML
tags so that the use of well-defined mathematical concepts in a document may be unambiguously expressed
by application of these tags. Building on top of this base, scientific markup languages are beginning to be
developed. In particular, we have identified several requirements and some solutions towards the
development of a physics markup language. For example, it must be embedded within a documentation
standard that supports an accompanying natural language description. The physics markup language itself
must have the ability to support the expression of physical models. This includes the concepts of: physical
objects, or physical bodies, which have physical observables as properties; and physical laws, which when
applied to physical objects results in model equations, or other relations. Physical objects have
spatio-temporal extents which are usually functions of time. These concepts must be translated into XML
elements so that the elements may be used by modelers to express their models in a straightforward way
using semantic tagging. In this paper we will discuss progress to date, including: the identification of Open
Mathematical Documents (OMDoc) [2] as a candidate documentation system; the definition of an abstract
data type for the expression of physical variables; and the definition of a physics-based model as a set of
constraint relations defined on a set of physical objects.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

from data: we must treat models as a kind of data. To do
this, we focus particularly on those technologies dealing
with the representation of mathematical semantics.

2. THE PHYSICAL OBJECT CONCEPT
 Our starting point is to first discuss how to represent the
things or nouns of the proposed language. A physical object
is a unification of the concept of a body in physics (as used
in Newton’s Definition I and elsewhere [3] , also Einstein’s
Körper [4, 5]) with the computer science concept of an
object (see, for example, [6]), represented as a
(mathematical) relation of attributes and behaviors. The
term, physical object, refers to the class of objects that
represents tangible, concrete entities that are presumed to be
governed by the laws of physics; those objects with
attributes that represent the physical observable properties
of such concrete entities. With the exception of an identity
attribute, other attributes that do not represent observable
properties governed by the laws of physics are extraneous to
our treatment here.
 The computer science concept of an object enables one
to couple state, or attribute values, together and also to
associate those linked attributes with behaviors that depend
on that state. There are some concepts, such as inheritance,
embodied in the object concept that may not be necessary to
representing physical objects but the object concept does
seem sufficient for representing physical objects, which
require part-of hierarchy for representing aggregate objects,
and, as we will see, abstract data types. The concept of a
physical object narrows the computer science concept to be
restricted to only those properties necessary for representing
concrete physical objects that have observable and
measurable attributes. This should not impede in any way
the use of the physical object concept within disciplines that
make use of the broader properties of general objects.
 The attributes of a physical object are generally those
properties that can be measured, such as mass, length, time,
current, temperature, etc., and assigned physical units, such
as kilogram, meter, second, ampere, Kelvin, etc. These are
generally regarded as fundamental, being ensconced in
international standards for many years. We would also
include state representations such as the quantum wave
function, even though strictly it is the expectation value of
its Hermitian operators that are measurable: the wave
function is generally needed for the representation of those
observables.
 One might question whether the concept of a physical
object is as fundamental as, say, the concept of a measurable
observable. A physical object is more abstract since it
cannot itself be directly measured – only its attributes may
be measured. When we model physical systems we often
use the idea of macroscopic primitive physical objects,
which are not aggregate objects: a perfectly conducting
sphere, a rigid cube, etc. But, we do not believe these are

fundamental: we don’t necessarily believe that such perfect
objects exist. They really represent a rather ad hoc way of
dividing up the perceptible world. The only instances of
primitive physical objects to represent anything fundamental
are, perhaps, the various elementary particles. We cannot,
however, mistake how fundamental the concept of a
physical object is with how fundamental, or not, are most
instances of that concept that we use. We must remember
that the concept of a physical object provides the context,
and hence, an essential part of the meaning of the
measurements of the attributes. One thing that the object
concept provides is the concept of a reference frame. Since
Einstein, it is generally agreed that the notion of an absolute
reference frame is physically meaningless. In physical
reality, reference frames must have a basis defined by
physical objects.

3. AN ABSTRACT DATA TYPE FOR PHYSICAL

OBSERVABLES
 Earlier [7] we posed the question: “Is there a
mathematical type for physical variables?”, meaning by the
term physical variable the symbols that we use to represent
the values of the observable properties of physical objects.
Many physicists and engineers may be unconcerned with
this question, acting as specialists in a well defined
specialty and comfortable with the standard notation of that
specialty. The problem of having communicating models
where classical, relativistic, and quantum physics models
interact, however, requires that we have a mechanism to
translate the representation of variables between these
models. Mathematical manipulations could be more efficient
and clear if they were in a uniform notation. Nevertheless,
the desirability of a single mathematical, or abstract, data
type for physical variables does not guarantee its existence,
nor would its apparent existence guarantee that it would
always be so. The future could bring new physical
phenomena that would break the old notation.
 The answer we arrived at was that, indeed, there
appears to be a single abstract data type that can account for
most, if not all, of the mathematical objects generally used
by physicists and engineers for representing physical
variables. Briefly stated, that type is formed as the
commutative mathematical product of a physical unit, such
as meter or second, and an element of a geometric algebra,
which belongs to the family of Clifford algebras. The
elements of Clifford algebras are vector-like objects. More
interestingly, Clifford algebras possess a vector product that
is associative and, with respect to which, each non-zero
element has an inverse. Real and complex valued scalars,
vectors and tensors may all be represented using geometric
algebras. Geometric algebras also contain operators of
physical invariance, such as the Euclidean transformations
(spatial rotations, translations, and reflections) and Lorentz
transformations (space-time rotations, boosts, and
reflections). Even the more esoteric Lie group elements such

as spinors and quaternions are elements of geometric
algebras.
 With this understanding we can now formalize the
representation of physical objects, which have physical
quantities as attributes, as a mathematical relation of
elements of a geometric algebra. We would also note that
representing a geometric algebra would appear to require
polymorphism and inheritance: the elements are sometimes
scalars, sometimes vectors, and sometimes multi-vectors,
and; because the elements of a geometric algebra have an
associative product and an inverse, they inherit group
properties. So, while we observed that there appears to be
no inheritance hierarchy for physical objects based on
physical principles, there appears to be one for their
attributes.

4. DEFINING MODELS
 What is a model? This is a question whose answer
defines the scope of what we may represent. Part of what
must be considered is how what we call models are created
and used. Physics-based computational models that are used
as components in software systems are typically formulated
as functional blocks: once values are bound to all of the
inputs, a unique output result may then be computed. This
functional block form works particularly well for causal
predictive models where past states serve as inputs and the
model produces output states that represent the future,
relative to the inputs. While the functional block form of a
model may be a frequently used form, it does not
necessarily capture the full meaning of what may be meant
by a physics-based model. To understand what a fuller
meaning of a physics-based model may be, we review the
creative process that gives rise to models. We will arrive at
two forms for a model: a specification-form, represented as
a constraint satisfaction problem, and a solution-form,
represented as a functional-block form. We note that this
development is a synthesis of previous work in describing
semantics of physics-based models [7-9] and some work
that has informed the development of the Systems Modeling
Language (SysML) [10-11].
 Developing a physics-based model begins with a
decision to describe the behavior of one or more physical
objects, their behavior, and their interactions with each
other. After deciding on the particular behavior and
interactions of interest, as well as the level of detail desired,
a representation of the attributes of the physical objects are
created in terms of spatio-temporal variables, and the
physical laws governing the behavior of those objects and
their interactions is applied. The physical laws typically are
formulated in terms of differential equations involving the
variables representing the attributes of the physical objects.
Variables may also be assigned to represent the initial
conditions for a meaningful representation of a solution to
the differential equations. Once the problem is so
formulated, one may say “all of the physics are

represented”. This means that all of the constraints on the
behavior of the modeled objects that are imposed by
physical principles, at least those considered by the modeler
to be relevant, have been applied. It is quite usual for some
parameter values to be left unspecified, in particular
scenario specific conditions, such as spatio-temporal
boundary conditions, or specific material properties such as
conductivity, hardness, etc. Once all of the physics have
been represented parametrically, what remains for a
complete understanding of the model is to explore the
solution space of the problem, for example, exploring the
range of allowed values of any parameters whose values are
unspecified. There may be undiscovered phenomena hiding
in the solution space even though the individual model
equations are well known.

4.1. Constraint Satisfaction Problems
 The result of making the modeling decisions that results
in a model is commonly represented by a set of model
equations. A complete summary of the model may be
phrased as a constraint satisfaction problem (see, for
example, [12]). Constraint satisfaction problems, or CSPs,
are well known in the computer science community, though
very often being defined over discrete domains while
physics-based models are usually defined over real or
complex domains.
 Formally, a constraint satisfaction problem is defined
by a triple, {X, D, C}, where X is a tuple of all the variables
in the problem, D is a tuple of corresponding domains for
those variables, and C is a set of constraints over the
variables in X. Each constraint may be represented as a pair,
{t, R}, where t is an n-tuple of some variables in X and R is
an n-ary relation, defining a set of tuples of allowed variable
values. For a CSP defined over finite, discrete domains, the
relation may take the form of an enumeration of its
elements. For infinite domains, such as real-valued physical
variables, the relation must be stated more succinctly, such
as an equality or inequality.
 What makes a CSP most interesting, of course, are the
solutions. An evaluation of the variables is a function
assigning values to the variables consistent with the variable
domains. A solution to a CSP is an evaluation of all the
variables that satisfies all of the constraints. In other words,
a solution is a way for assigning a value to each variable in
such a way that all constraints are satisfied by these values.
A CSP is said to be satisfiable if solutions exist.
 A CSP may be represented as an undirected graph, a
constraint graph, where the nodes are the variables and
edges represent binary constraints, or constraints between
pairs of variables. Higher order, or n-ary, constraints may be
represented with a second type of node having edges
connected to all of the variable nodes that it affects. The
application of a typical physical law gives rise to an n-ary

constraint for each pair of physical objects, coupling n
physical variables in an equation or inequality.
 Because the form of the CSP captures the physics-based
requirements, we also refer to it as the specification-form of
a model.

4.2. Functional Block Models
Many if not most of the computational models resulting
from the mathematical modeling process are more
specialized than the conceptual model that they are drawn
from. After transforming models into a discretized version,
they are commonly implemented in an imperative
programming language, and are characterized by sequences
of variable bindings. While side-effects are not unknown, in
the best of cases these models, when implemented for
operational use, retain a functional form, i.e., when all of the
inputs are known or bound, then the outputs may be
explicitly computed and bound. For this reason, we also
refer to the functional block model as the solution-form,
since that is the form that is operationally useful.
 It is important to note how the functional block
representation of a model is different from the constraint
satisfaction problem representation of a model. Take, for
instance, a model given by:

F = m*a

This is a statement of a constraint relation, of equality in
particular, between the three variables, F, m, and a, and
from which we can form a CSP. Taking this particularly
simple CSP we can easily derive three different functional
block computational models, one for each of the variables,
i.e.,

“F := m*a”, “m := F/a”, and “a := F/m”

 Here the variables on the right-hand sides of the
assignment statements are inputs and the variables on the
left-hand sides of the assignment statements are outputs.
These statements not only reflect the equality constraints,
but also explicitly specify the sequence of bindings. Because
these three variables, F, m, and a, each depend on the other
two, their three corresponding function-block models have
mutually incompatible precedence relationships: it does not
make sense to have any pair of these three functional blocks
simultaneously operable. To understand this we need to
recall that each input and each output represents the value of
a specific observable property of a specific physical object.
To compose functional block forms in such a way as to have
the binding of a particular observable precede itself doesn’t
make sense.
 From this analysis we see that a significant difference
in these representations of models is the binding sequence:
it is an essential part of the function-block representation of
a model, but not always present in the CSP form. One could

conceivably add precedence constraints to the constraint list
and even attach physical interpretation to them, such as
causality, where initial conditions precede later states.
Adding precedence constraints to the constraint list does not
appear to be part of the CSP formalism, nor does it appear
to be necessary since it does not affect the nature of the
solutions to the CSP with respect to the resulting functional
equations.
 Considering the above example, the function-block
representation may be viewed as originating from a CSP
solution with the subsequent addition of binding sequence
constraints. In this way, one CSP can give rise to multiple
function-block models where the CSP represents a set of
functional requirements and the function-block
representation provides an effective implementation
satisfying the precedence requirements in a more specific
context. Another significant difference between the CSP
representation of models and the function-block
representation is that the constraints expressed in the CSP
typically hold physical semantic value as representing
properties of the solution. The function-block
representation, by itself, when it is disconnected from a
corresponding CSP description to which it provides a
solution, suffers a loss of the information that is embodied
in the constraints.

5. COMPOSITION OF MODELS
 The composition of models is important to consider,
particularly from the objectives of re-use and systems
design and analysis. If we want to analyze how two objects
will interact, we will want to meaningfully combine, or
compose, their respective models. Also, it is quite possible,
if not likely, that a given model is actually comprised of
multiple sub-models. Understanding how sub-models may
be combined to form a given model, or be removed from or
be substituted into that given model, also comes under the
subject of model composition.
 When a model is posited as a functional block,
composition of models is most naturally given by function
composition. Composition of models in functional block
form is very straightforward: bind the outputs of one block
to the inputs of a second. This type of composition is used
when the first of the two component models provides state
values that are used by, but not affected by, the second
model.
 When a model is posited as a constraint satisfaction
problem, then composition of two problems is reasonably
defined by the union of the variables and the union of the
sets of constraint relations, i.e., for

{X, D, C} =
 Composition({X1, D1, C1}, {X2, D2, C2})

Where in the resulting CSP, X is the union of the tuples X1
and X2: variables that occur in either X1 or X2 will be
represented once in X and variables that occur in both X1
and X2 are only represented once in X. Since the variable
domains, D, D1, and D2, essentially represent unary
constraints on the variables, if Xi = X1k = X2m then Di is
given by the union of the constraints, which is just the
intersection of D1k and D2m. Domains of variables
occurring in only one of the tuples X1 or X2 are the same in
D as they are in D1 or D2. Finally, the set of constraints, C,
is given by the union of C1 and C2.

Figure 1. Some semantic concept classes for physics
markup

 Composition of physical objects is achieved by
aggregation. A primitive physical object is simply one that
is not an aggregated object. An aggregate physical object is
comprised of primitive and aggregate physical objects.
Aggregating physical objects is largely a modeling choice,
but should be motivated by the existence of interactions
between the constituent physical objects. Aggregating
physical objects must obey the necessary physical
conservation laws, i.e., of mass, energy, charge, momentum,
etc.

mass_density(x)
…

(observable properties)

relation template between
observable properties

of physical objects

set of physical variables,

set of domains,
set of constraints

set of input physical variables,
set of output physical variables,

variable domains

Derivation,
constructive proof
or algorithm

composition

composition

Physical Object(i) Physical Law

Function-Block
(solution-form model)

Constraint Satisfaction Problem
(CSP)
(specification-form model)

6. FULL PICTURE OF THE MODELING PROCESS
Considering what we have discussed, we now put together a
full picture of a regular, formal structure to the process of
mathematical modeling in physics. This results in semantic
concept classes, in Figure 1, which will help us define
semantic XML tags. (The discussion of this section refers to
Figure 1).
 First we identify the physical objects and
representations of their measurable properties. The class of
physical objects may be described as a mathematical
relation of these properties. The modeler may create
aggregate objects or primitive (non-aggregate) objects.
 The modeler then chooses how to apply different
physical laws to the objects. The allowed operations are
defined by the algebra of the variables representing the
physical observables: in general these are elements of a
specified geometric algebra.
 The application of physical laws results in equations
and inequalities which constitute a set of constraints phrased
as a Constraint Satisfaction Problem, or CSP. The CSP form
is a well established form for encapsulating a problem
definition. The constraints may be annotated with the names
of physical laws used to define them.
 Even with soundly defined problems, i.e., satisfiable
CSPs, there is no guarantee of a path to a solution.
Sometimes solutions may be found by the modeler, with or
without the aid of computer algebra solvers, or in the
literature. The documentation form of the finding of a
solution is that of a derivation, constructive proof, or
algorithm.
 The final solution-form is a function-block. Note that
the equality relation, F=ma , can result in three distinct
function-block forms: F:=ma ; m:=F/a ; a:=F/m. The
difference between these is that assignments impose
evaluation precedence, i.e., inputs must be known before
outputs may be computed. Computer models are frequently
provided as a single function-block form.
 Meaningful composition is feasible for both the
function-block version of a model and the CSP version.
Function-block composition may only result in an acyclic
graph. Composing such “strongly-interacting” sub-models,
where attempting to do so at the function-block level it
would appear that a variable is both an input and an output,
may only be done properly at a higher level, by composing
CSP forms or by additional modeling constraints provided
by the modeler.

7. OMDOC AND PHYSML
Developing a physics markup language is an attempt to
document certain types of abstract knowledge. As such, we
must consider not only the particular elements of physics-
like knowledge but we must also consider the framework in
which such knowledge is embedded. We must, for example,

have the concept of a document. The concept of a document
is essential for encapsulating particulars regarding the
intellectual product contained within. For example,
identifying the subject matter, the author, the date produced,
etc., are important. An important feature of much of the
effective knowledge in physics is its mathematical nature,
therefore having a means of expressing the mathematical
semantics of the knowledge is very important. After
surveying the literature we identified OMDoc as having
many desirable attributes to further our objectives. OMDoc
is open and extensible. OMDoc uses OpenMath and
Content-MathML for expressing mathematical formulae and
also provides other modules, which support, for example,
axiom, theorem and proof structures. These shall prove
useful for documentation of the formal aspects of physics
knowledge.
 From the OMDoc documentation[2], OMDoc is a
markup format and data model for Open Mathematical
Documents. It serves as semantics-oriented representation
format and ontology language for mathematical knowledge.
OMDoc concentrates on representing the meaning of
mathematical formulae instead of their appearance. OMDoc
is an extension of the OpenMath and (content) MathML
standards. It extends these formats by markup for the
document and theory level of mathematical documents, so
that the document author can specify them and the consumer
(an OMDoc reader or a mathematical software system) can
take advantage of them. The value of having a document
marked in this way should provide at least two benefits: a
means of providing unambiguous documentation, valuable
for validation, and; a form that is readily interpreted by
computer for testing by model execution.
 OMDoc is an XML application, organized into
modules. While it includes support for expressing
mathematical objects, abstract data types, and proofs,
necessary to supporting the bulk of the above discussed
concepts, It also supports documentation tagging, such as
provided by Dublin Core[13] and Creative Commons[14]
metadata, necessary for supporting documentation of textual
intellectual products.
 Recently, a new collaborative project, PhysML[15],
was initiated as part of the OMDoc project to create a
markup language for documenting physics knowledge, not
restricted to purely formal knowledge. The representation of
physics-based models is only a subset of the more formal
aspects of physics knowledge. Since this and prior work
share some of the same goals and can benefit from joint
work, we expect in the future to participate in that
collaboration. In particular, we are embarking on the
creation of content dictionaries to capture the physical
semantics, including the concepts expressed in this paper.

8. CONCLUSIONS
 We have attempted to identify as abstractly as possible
the form that the physics-based modeling process takes. Our
purpose in doing this is to identify the concepts, particularly
the mathematical concepts, that may be represented using
existing and emerging mathematical content representation
formats. The purpose for doing this is to provide a
mechanism for unambiguous documentation of the physics-
based models that lie at the core of the modeling and
simulation of many systems. While the focus of this work is
on the representation of physical semantics, we have tried,
principally by relating it back to the object model and
synthesizing with other systems specification work[], to
phrase it in such a way as to be a semantic layer that is
compatible with other types of information necessary for
documenting the design and analysis of systems.

References

[1] World Wide Web Consortium (W3C), “Extensible
Markup Language (XML)” http://www.w3.org/XML/

[2] M. Kohlhase, “OMDoc: An Open Markup Format for
Mathematical Documents (Version 1.2)”, number 4180 in
Lecture Notes in Artificial Intelligence (LNAI), Springer
Verlag, 2006

[3] F. Cajori, “Sir Isaac Newton’s Mathematical Principles
of Natural Philosophy And His System Of The World”
University of California Press (1947).

[4] A. Einstein, “The Meaning of Relativity”, Princeton
University Press, expanded edition (2005).

[5] A. Einstein, “Zur Elektrodynamik bewegter Körper”,
(“On the Electrodynamics of Moving Bodies”), Annalen der
Physik vol XVII, 1905 p. 891-921,

[6] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen, “Object-Oriented Modeling and Design”,
Prentice Hall, (1991).

[7] J. B. Collins, “A Mathematical type for Physical
Variables”, submitted, Mathematical Knowledge
Management 2008, for publication in the Lecture Notes in
Artificial Intelligence (LNAI) series, Springer-Verlag.

[8] J. B. Collins, and D. Clark, “Towards an Ontology of
Physics”, Proceedings of the European Simulation
Interoperability Workshop, July 2004, 04E-SIW-044.

[9] J. B. Collins, “Standardizing an Ontology of Physics for
Modeling and Simulation”, Proceedings of the Fall

Simulation Interoperability Workshop, September 2004
04F-SIW-096.

[10] M.W. Wilson, R.S. Peak, R.E. Fulton, “Enhancing
Engineering Design and Analysis Interoperability - Part 1:
Constrained Objects”, First MIT Conference Computational
Fluid and Structural Mechanics (CFSM), Boston (June,
2001).

[11] R.S. Peak, and M.W. Wilson, “Enhancing Engineering
Design and Analysis Interoperability - Part 2: A High
Diversity Example”, First MIT Conference Computational
Fluid and Structural Mechanics (CFSM), Boston (June,
2001).

[12] E. Tsang, “Foundations of Constraint Satisfaction”,
Academic Press (1995)

[13] http://dublincore.org/
[
[14] http://creativecommons.org/

[15] E. R. Hilf, M. Kohlhase and H. Stamerjohanns,
“Capturing the Content of Physics: Systems, Observables,
and Experiments” MKM 2006, Lecture Notes in Computer
Science, Vol 4108 pp165-178, Springer (2006)

Biography
 Joseph Collins has been a Research Physicist at the
Naval Research Laboratory for eighteen years, working
largely on modeling and simulation of physical systems.

